Self-current induced spin-orbit torque in FeMn/Pt multilayers
نویسندگان
چکیده
Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.
منابع مشابه
Spin-Hall-Effect-Assisted Electroresistance in Antiferromagnets via 105 A/cm2 dc Current
Antiferromagnet (AFM) spintronics with reduced electrical current is greatly expected to process information with high integration and low power consumption. In Pt/FeMn and Ta/FeMn hybrids, we observe significant resistance variation (up to 7% of the total resistance) manipulated by 10(5) A/cm(2) dc current. We have excluded the contribution of isotropic structural effects, and confirmed the cr...
متن کاملSpin-orbit torque in Pt/CoNiCo/Pt symmetric devices
Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structu...
متن کاملCurrent-induced magnetization switching using an electrically insulating spin-torque generator
Current-induced magnetization switching through spin-orbit torques is the fundamental building block of spin-orbitronics, which promises high-performance, low-power memory and logic devices. The spin-orbit torques generally arise from spin-orbit coupling of heavy metals. However, even in a heterostructure where a metallic magnet is sandwiched by two different insulators, a nonzero spin-orbit to...
متن کاملSpin-orbit torques in Co/Pd multilayer nanowires.
Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (fieldlike) torques build up in the nanowire. The torque efficiencies are found to be as...
متن کاملSpin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy
As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016